Ibn Al Haytham

Ibn al-Haytham was a astronomer, mathematician & physicist of the Islamic Golden Age. His famous books ……

Photo: Sopianwar / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)


Nationality: Arab

Born: July 1, 965 AD

Born Place: Basrah, Iraq

Died: March 6, 1040

Death Place: Cairo, Egypt

Influenced by: Aristotle, Al-Kindi, Ptolemy, Euclid, Thabit ibn Qurra, Galen, Banu Musa, Abu Sahl al-Quhi, Ibn Sahl

Fields: Optics, Astronomy, Mathematics

Gender: Male

Known for: Book of OpticsDoubts Concerning Ptolemy, Alhazen’s problem, analysis, Catoptrics, horopter, intromission theory of visual perception, moon illusion, experimental science, scientific methodology, empirical theory of perception, animal psychology


Ḥasan Ibn al-Haytham (full name Abū ʿAlī al-Ḥasan ibn al-Ḥasan ibn al-Haytham أبو علي، الحسن بن الحسن بن الهيثم; c. 965 – c. 1040) was an Arab mathematician, astronomer, and physicist of the Islamic Golden Age. Referred to as “the father of modern optics”, he made significant contributions to the principles of optics and visual perception in particular. His most influential work is titled Kitāb al-Manāẓir (Arabic: كتاب المناظر, “Book of Optics”), written during 1011–1021, which survived in a Latin edition. A polymath, he also wrote on philosophy, theology and medicine.

Ibn al-Haytham was the first to explain that vision occurs when light reflects from an object and then passes to one’s eyes. He was also the first to demonstrate that vision occurs in the brain, rather than in the eyes. Building upon a naturalistic, empirical method pioneered by Aristotle in ancient Greece, Ibn al-Haytham was an early proponent of the concept that a hypothesis must be supported by experiments based on confirmable procedures or mathematical evidence—an early pioneer in the scientific method five centuries before Renaissance scientists.

Born in Basra, he spent most of his productive period in the Fatimid capital of Cairo and earned his living authoring various treatises and tutoring members of the nobilities. Ibn al-Haytham is sometimes given the byname al-Baṣrī after his birthplace, or al-Miṣrī (“of Egypt”). Al-Haytham was dubbed the “Second Ptolemy” by Abu’l-Hasan Bayhaqi and “The Physicist” by John Peckham. Ibn al-Haytham paved the way for the modern science of physical optics.

Mathematical works

In mathematics, Alhazen built on the mathematical works of Euclid and Thabit ibn Qurra and worked on “the beginnings of the link between algebra and geometry”.

He developed a formula for summing the first 100 natural numbers, using a geometric proof to prove the formula.


Alhazen explored what is now known as the Euclidean parallel postulate, the fifth postulate in Euclid’s Elements, using a proof by contradiction,[113] and in effect introducing the concept of motion into geometry.[114] He formulated the Lambert quadrilateral, which Boris Abramovich Rozenfeld names the “Ibn al-Haytham–Lambert quadrilateral”.

In elementary geometry, Alhazen attempted to solve the problem of squaring the circle using the area of lunes (crescent shapes), but later gave up on the impossible task. The two lunes formed from a right triangle by erecting a semicircle on each of the triangle’s sides, inward for the hypotenuse and outward for the other two sides, are known as the lunes of Alhazen; they have the same total area as the triangle itself.

Number theory

Alhazen’s contributions to number theory include his work on perfect numbers. In his Analysis and Synthesis, he may have been the first to state that every even perfect number is of the form 2n−1(2n − 1) where 2n − 1 is prime, but he was not able to prove this result; Euler later proved it in the 18th century.

Alhazen solved problems involving congruences using what is now called Wilson’s theorem. In his Opuscula, Alhazen considers the solution of a system of congruences, and gives two general methods of solution. His first method, the canonical method, involved Wilson’s theorem, while his second method involved a version of the Chinese remainder theorem.


Alhazen discovered the sum formula for the fourth power, using a method that could be generally used to determine the sum for any integral power. He used this to find the volume of a paraboloid. He could find the integral formula for any polynomial without having developed a general formula.


Alhazen made significant contributions to optics, number theory, geometry, astronomy and natural philosophy. Alhazen’s work on optics is credited with contributing a new emphasis on experiment.

His main work, Kitab al-Manazir (Book of Optics), was known in the Muslim world mainly, but not exclusively, through the thirteenth-century commentary by Kamāl al-Dīn al-Fārisī, the Tanqīḥ al-Manāẓir li-dhawī l-abṣār wa l-baṣā’ir. In al-Andalus, it was used by the eleventh-century prince of the Banu Hud dynasty of Zaragossa and author of an important mathematical text, al-Mu’taman ibn Hūd. A Latin translation of the Kitab al-Manazir was made probably in the late twelfth or early thirteenth century. This translation was read by and greatly influenced a number of scholars in Christian Europe including: Roger Bacon, Robert Grosseteste, Witelo, Giambattista della Porta, Leonardo Da Vinci, Galileo Galilei, Christiaan Huygens, René Descartes, and Johannes Kepler. His research in catoptrics (the study of optical systems using mirrors) centred on spherical and parabolic mirrors and spherical aberration. He made the observation that the ratio between the angle of incidence and refraction does not remain constant, and investigated the magnifying power of a lens. His work on catoptrics also contains the problem known as “Alhazen’s problem”. Meanwhile in the Islamic world, Alhazen’s work influenced Averroes’ writings on optics, and his legacy was further advanced through the ‘reforming’ of his Optics by Persian scientist Kamal al-Din al-Farisi (died c. 1320) in the latter’s Kitab Tanqih al-Manazir (The Revision of [Ibn al-Haytham’s] Optics). Alhazen wrote as many as 200 books, although only 55 have survived. Some of his treatises on optics survived only through Latin translation. During the Middle Ages his books on cosmology were translated into Latin, Hebrew and other languages.

The impact crater Alhazen on the Moon is named in his honour, as was the asteroid 59239 Alhazen. In honour of Alhazen, the Aga Khan University (Pakistan) named its Ophthalmology endowed chair as “The Ibn-e-Haitham Associate Professor and Chief of Ophthalmology”. Alhazen, by the name Ibn al-Haytham, is featured on the obverse of the Iraqi 10,000-dinar banknote issued in 2003, and on 10-dinar notes from 1982.

The 2015 International Year of Light celebrated the 1000th anniversary of the works on optics by Ibn Al-Haytham.

The contents of this page are sourced from Wikipedia article on 4 July 2020. The contents are available under the CC BY-SA 4.0 license.

Leave a Reply

Your email address will not be published. Required fields are marked *

Translate »