Scientists

James Clerk Maxwell

Photo: Unidentified photographer. Smithsonian Institution from United States / Public domain

Born: June 13, 1831

Born Place: Edinburgh, United Kingdom

Died: November 5, 1879

Death Place: Cambridge, United Kingdom

Nationality: Scottish, British

Gender: Male

Known for: Maxwell’s equations
Maxwell relations
Maxwell distribution
Maxwell’s demon
Maxwell’s discs
Maxwell speed distribution
Maxwell’s theorem
Maxwell material
Generalized Maxwell model
Displacement current
Maxwell coil
Maxwell’s wheel

Spouse: Katherine Clerk Maxwell

Awards: FRSE
FRS
Smith’s Prize (1854)
Adams Prize (1857)
Rumford Medal (1860)
Keith Prize (1869–71)

BIOGRAPHY

James Clerk Maxwell FRSE FRS (13 June 1831 – 5 November 1879) was a Scottish scientist in the field of mathematical physics. His most notable achievement was to formulate the classical theory of electromagnetic radiation, bringing together for the first time electricity, magnetism, and light as different manifestations of the same phenomenon. Maxwell’s equations for electromagnetism have been called the “second great unification in physics” after the first one realised by Isaac Newton.

With the publication of “A Dynamical Theory of the Electromagnetic Field” in 1865, Maxwell demonstrated that electric and magnetic fields travel through space as waves moving at the speed of light. He proposed that light is an undulation in the same medium that is the cause of electric and magnetic phenomena. The unification of light and electrical phenomena led his prediction of the existence of radio waves. Maxwell is also regarded as a founder of the modern field of electrical engineering.

He helped develop the Maxwell–Boltzmann distribution, a statistical means of describing aspects of the kinetic theory of gases. He is also known for presenting the first durable colour photograph in 1861 and for his foundational work on analysing the rigidity of rod-and-joint frameworks (trusses) like those in many bridges.

His discoveries helped usher in the era of modern physics, laying the foundation for such fields as special relativity and quantum mechanics. Many physicists regard Maxwell as the 19th-century scientist having the greatest influence on 20th-century physics. His contributions to the science are considered by many to be of the same magnitude as those of Isaac Newton and Albert Einstein. In the millennium poll—a survey of the 100 most prominent physicists—Maxwell was voted the third greatest physicist of all time, behind only Newton and Einstein. On the centenary of Maxwell’s birthday, Einstein described Maxwell’s work as the “most profound and the most fruitful that physics has experienced since the time of Newton”. Einstein, when he visited the University of Cambridge in 1922, was told by his host that he had done great things because he stood on Newton’s shoulders; Einstein replied: “No I don’t. I stand on the shoulders of Maxwell”.

EARLY LIFE

James Clerk Maxwell was born on 13 June 1831 at 14 India Street, Edinburgh, to John Clerk Maxwell of Middlebie, an advocate, and Frances Cay daughter of Robert Hodshon Cay and sister of John Cay. (His birthplace now houses a museum operated by the James Clerk Maxwell Foundation.) His father was a man of comfortable means of the Clerk family of Penicuik, holders of the baronetcy of Clerk of Penicuik. His father’s brother was the 6th Baronet. He had been born “John Clerk”, adding Maxwell to his own after he inherited (as an infant in 1793) the Middlebie estate, a Maxwell property in Dumfriesshire. James was a first cousin of both the artist Jemima Blackburn (the daughter of his father’s sister) and the civil engineer William Dyce Cay (the son of his mother’s brother). Cay and Maxwell were close friends and Cay acted as his best man when Maxwell married.

Maxwell’s parents met and married when they were well into their thirties; his mother was nearly 40 when he was born. They had had one earlier child, a daughter named Elizabeth, who died in infancy.

When Maxwell was young his family moved to Glenlair, in Kirkcudbrightshire which his parents had built on the estate which comprised 1,500 acres (610 ha). All indications suggest that Maxwell had maintained an unquenchable curiosity from an early age. By the age of three, everything that moved, shone, or made a noise drew the question: “what’s the go o’ that?” In a passage added to a letter from his father to his sister-in-law Jane Cay in 1834, his mother described this innate sense of inquisitiveness:

He is a very happy man, and has improved much since the weather got moderate; he has great work with doors, locks, keys, etc., and “show me how it doos” is never out of his mouth. He also investigates the hidden course of streams and bell-wires, the way the water gets from the pond through the wall….

EDUCATION

Recognising the boy’s potential, Maxwell’s mother Frances took responsibility for his early education, which in the Victorian era was largely the job of the woman of the house. At eight he could recite long passages of Milton and the whole of the 119th psalm (176 verses). Indeed, his knowledge of scripture was already detailed; he could give chapter and verse for almost any quotation from the psalms. His mother was taken ill with abdominal cancer and, after an unsuccessful operation, died in December 1839 when he was eight years old. His education was then overseen by his father and his father’s sister-in-law Jane, both of whom played pivotal roles in his life. His formal schooling began unsuccessfully under the guidance of a 16 year old hired tutor. Little is known about the young man hired to instruct Maxwell, except that he treated the younger boy harshly, chiding him for being slow and wayward. The tutor was dismissed in November 1841. James’ father took him to Robert Davidson’s demonstration of electric propulsion and magnetic force on February 12, 1842, an experience with profound implications for the boy.

Maxwell was sent to the prestigious Edinburgh Academy. He lodged during term times at the house of his aunt Isabella. During this time his passion for drawing was encouraged by his older cousin Jemima. The 10-year-old Maxwell, having been raised in isolation on his father’s countryside estate, did not fit in well at school. The first year had been full, obliging him to join the second year with classmates a year his senior. His mannerisms and Galloway accent struck the other boys as rustic. Having arrived on his first day of school wearing a pair of homemade shoes and a tunic, he earned the unkind nickname of “Daftie”. He never seemed to resent the epithet, bearing it without complaint for many years. Social isolation at the Academy ended when he met Lewis Campbell and Peter Guthrie Tait, two boys of a similar age who were to become notable scholars later in life. They remained lifelong friends.

Maxwell was fascinated by geometry at an early age, rediscovering the regular polyhedra before he received any formal instruction. Despite winning the school’s scripture biography prize in his second year, his academic work remained unnoticed until, at the age of 13, he won the school’s mathematical medal and first prize for both English and poetry.

Maxwell’s interests ranged far beyond the school syllabus and he did not pay particular attention to examination performance. He wrote his first scientific paper at the age of 14. In it he described a mechanical means of drawing mathematical curves with a piece of twine, and the properties of ellipses, Cartesian ovals, and related curves with more than two foci. The work, of 1846, “On the description of oval curves and those having a plurality of foci” was presented to the Royal Society of Edinburgh by James Forbes, a professor of natural philosophy at the University of Edinburgh, because Maxwell was deemed too young to present the work himself. The work was not entirely original, since René Descartes had also examined the properties of such multifocal ellipses in the 17th century, but he had simplified their construction.

PERSONAL LIFE

As a great lover of Scottish poetry, Maxwell memorised poems and wrote his own. The best known is Rigid Body Sings, closely based on “Comin’ Through the Rye” by Robert Burns, which he apparently used to sing while accompanying himself on a guitar. It has the opening lines

Gin a body meet a body

Flyin’ through the air.
Gin a body hit a body,

Will it fly? And where?

A collection of his poems was published by his friend Lewis Campbell in 1882.

Descriptions of Maxwell remark upon his remarkable intellectual qualities being matched by social awkwardness.

Maxwell was an evangelical Presbyterian and in his later years became an Elder of the Church of Scotland.[94] Maxwell’s religious beliefs and related activities have been the focus of a number of papers. Attending both Church of Scotland (his father’s denomination) and Episcopalian (his mother’s denomination) services as a child, Maxwell later underwent an evangelical conversion in April 1853. One facet of this conversion may have aligned him with an antipositivist position.

PUBLICATIONS

  • Maxwell, James Clerk (1873), A treatise on electricity and magnetism Vol I, Oxford : Clarendon Press
  • Maxwell, James Clerk (1873), A treatise on electricity and magnetism Vol II, Oxford : Clarendon Press
  • Maxwell, James Clerk (1881), An Elementary treatise on electricity, Oxford : Clarendon Press
  • Maxwell, James Clerk (1890), The scientific papers of James Clerk Maxwell Vol I, Dover Publication
  • Maxwell, James Clerk (1890), The scientific papers of James Clerk Maxwell Vol II, Cambridge, University Press
  • Maxwell, James Clerk (1908), Theory of heat, Longmans Green Co.
  • Three of Maxwell’s contributions to Encyclopædia Britannica appeared in the Ninth Edition (1878): AtomAttraction,, and Ether; and three in the Eleventh Edition (1911): Capillary ActionDiagram, and Faraday, Michael

The contents of this page are sourced from Wikipedia article on 4 July 2020. The contents are available under the CC BY-SA 4.0 license.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Check Also
Close
Back to top button